Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Bioscience ; 74(3): 146-158, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38560618

RESUMO

What are social niches, and how do they arise and change? Our first goal in the present article is to clarify the concept of an individualized social niche and to distinguish it from related concepts, such as a social environment and a social role. We argue that focal individuals are integral parts of individualized social niches and that social interactions with conspecifics are further core elements of social niches. Our second goal in the present article is to characterize three types of processes-social niche construction, conformance, and choice (social NC3 processes)-that explain how individualized social niches originate and change. Our approach brings together studies of behavior, ecology, and evolution and integrates social niches into the broader concept of an individualized ecological niche. We show how clarifying the concept of a social niche and recognizing the differences between the three social NC3 processes enhance and stimulate empirical research.

2.
J Toxicol Environ Health A ; 87(8): 342-356, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38310537

RESUMO

The assessment of amphibian responses as bioindicators of exposure to chemical pollutants is an important tool for conservation of native species. This study aimed to investigate the effects of chronic aluminum (Al) and zinc (Zn) exposure on survival, body size, morphology (malformations), and immune system (leukocyte profile) in P. cuvieri tadpoles. Ecotoxicological analyses were performed utilizing chronic toxicity tests in which 210 tadpoles at the 25th Gosner developmental stage were exposed to Al and Zn. Individuals of P. cuvieri were maintained in glass containers containing various concentrations of aluminum sulfate (0.1, 0.2, or 0.3 mg/L) and zinc sulfate (0.18, 0.27 or 0.35 mg/L), and tests were performed in triplicate. After 14 days, amphibians were weighed, measured and survival rate, malformations in the oral and intestine apparatus, leukocyte profile, and ratio between neutrophils and lymphocytes determined. The differing concentrations of Al and Zn did not produce lethality in P. cuvieri where 95% of the animals survived 326 hr following metal exposure. Individuals exposed to Zn achieved greater body growth and weight gain compared to controls. Aluminum increased weight gain compared controls. These metals also produced malformations of the oral and intestine apparatus and enhanced occurrence of hemorrhages, especially at the highest doses. Lymphocytes were the predominant cells among leukocytes, with lymphopenia and neutrophilia observed following Al and Zn treatment, as evidenced by elevated neutrophil/lymphocyte ratio, an important indicator of stress in animals. Data suggest that further studies need to be carried out, even with metal concentrations higher than those prescribed by CONAMA, to ensure the conservation of this species.


Assuntos
Poluentes Químicos da Água , Zinco , Humanos , Animais , Zinco/farmacologia , Zinco/toxicidade , Alumínio/farmacologia , Larva , Anuros/fisiologia , Metais , Sistema Imunitário/química , Tamanho Corporal , Aumento de Peso , Poluentes Químicos da Água/toxicidade
3.
Sci Adv ; 10(8): eadj6801, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38394192

RESUMO

Tropical precipitation extremes and their changes with surface warming are investigated using global storm resolving simulations and high-resolution observations. The simulations demonstrate that the mesoscale organization of convection, a process that cannot be physically represented by conventional global climate models, is important for the variations of tropical daily accumulated precipitation extremes. In both the simulations and observations, daily precipitation extremes increase in a more organized state, in association with larger, but less frequent, storms. Repeating the simulations for a warmer climate results in a robust increase in monthly-mean daily precipitation extremes. Higher precipitation percentiles have a greater sensitivity to convective organization, which is predicted to increase with warming. Without changes in organization, the strongest daily precipitation extremes over the tropical oceans increase at a rate close to Clausius-Clapeyron (CC) scaling. Thus, in a future warmer state with increased organization, the strongest daily precipitation extremes over oceans increase at a faster rate than CC scaling.

4.
Ecol Lett ; 27(2): e14365, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362774

RESUMO

Plants harbour a great chemodiversity, that is diversity of specialised metabolites (SMs), at different scales. For instance, individuals can produce a large number of SMs, and populations can differ in their metabolite composition. Given the ecological and economic importance of plant chemodiversity, it is important to understand how it arises and is maintained over evolutionary time. For other dimensions of biodiversity, that is species diversity and genetic diversity, quantitative models play an important role in addressing such questions. Here, we provide a synthesis of existing hypotheses and quantitative models, that is mathematical models and computer simulations, for the evolution of plant chemodiversity. We describe each model's ingredients, that is the biological processes that shape chemodiversity, the scales it considers and whether it has been formalized as a quantitative model. Although we identify several quantitative models, not all are dynamic and many influential models have remained verbal. To fill these gaps, we outline our vision for the future of chemodiversity modelling. We identify quantitative models used for genetic variation that may be adapted for chemodiversity, and we present a flexible framework for the creation of individual-based models that address different scales of chemodiversity and combine different ingredients that bring this chemodiversity about.


Assuntos
Biodiversidade , Plantas , Humanos , Plantas/genética , Simulação por Computador
5.
Ecotoxicol Environ Saf ; 272: 116086, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38354433

RESUMO

Anthropogenic influences such as plastic pollution are causing serious environmental problems. While effects of microplastics on marine organisms are well studied, less is known about effects of plastic particles on terrestrial organisms such as plants. We investigated the effects of microplastic particles on different growth and metabolic traits of savoy cabbage (Brassica oleracea var. sabauda). Sections of seedlings exposed to polystyrene particles were analysed by coherent Raman scattering microscopy. These analyses revealed an uptake of particles in a size range of 0.5 µm to 2.0 µm into cells of the hypocotyl. Furthermore, plants were grown in substrate amended with polyethylene and polystyrene particles of different sizes (s1: 200-500 µm; s2: 100-200 µm; s3: 20-100 µm; s4: < 100 µm, with most particles < 20 µm; s5: < 20 µm) and in different concentrations (c1 = 0.1%, c2 = 0.01%, c3 = 0.001%). After several weeks, shoot and root biomass were harvested. Leaves were analysed for their carbon to nitrogen ratio, while amino acid and glucosinolate composition were measured using high performance liquid chromatography. Plastic type, particle size and concentration showed distinct effects on certain plant traits. Shoot biomass was interactively influenced by size and concentration of polyethylene, while root biomass was not modified by any of the plastic exposure treatments. Likewise, the composition and total concentrations of leaf amino acids were not affected, but the leucine concentration was significantly increased in several of the plastic-exposed plants. Glucosinolates were also slightly altered, depending on the particle size. Some of the observed effects may be independent of plastic uptake, as larger particles were not taken up but still could affect plant traits. For example, in the rhizosphere plastic particles may increase the water holding capacity of the soil, impacting some of the plant traits. In summary, this study shows how important the plastic type, particle size and concentration are for the uptake of microplastics and their effects on plant traits, which may have important implications for crops, but also for ecosystems.


Assuntos
Brassica , Microplásticos , Microplásticos/toxicidade , Plásticos/análise , Ecossistema , Poliestirenos/análise , Brassica/metabolismo , Plantas/metabolismo , Polietileno/toxicidade , Polietileno/análise
6.
Artigo em Inglês | MEDLINE | ID: mdl-38218566

RESUMO

Amphibians are considered bioindicators of the environment due to their high sensitivity and involvement in terrestrial and aquatic ecosystems. In the last two decades, 2,4-D has been one of the most widely used herbicides in Brazil and around the world, as its use has been authorized for genetically modified crops and therefore has been detected in surface and groundwater. Against this background, the aim of this work was to investigate the effects of environmentally relevant concentrations of 2,4-D-based herbicides on survival, malformations, swimming activity, presence of micronuclei and erythrocyte nuclear abnormalities in Physalaemus cuvieri tadpoles. The amphibians were exposed to six concentrations of 2,4-D-based herbicides: 0.0, 4.0, 30.0, 52.5, 75.0, and 100 µg L-1, for 168 h. At concentrations higher than 52.5 µg L-1, significantly increased mortality was observed from 24 h after exposure. At the highest concentration (100 µg L-1), the occurrence of mouth and intestinal malformations was also observed. The occurrence of erythrocyte nuclear abnormalities at concentrations of 30.0, 52.5, 75.0 and 100 µg L-1 and the presence of micronuclei at concentrations of 52.5, 75.0, and 100 µg L-1 were also recorded. These effects of 2,4-D in P. cuvieri indicate that the ecological risk observed at concentrations above 10.35 µg L-1 2,4-D may represent a threat to the health and survival of this species, i.e., exposure to 2,4-D at concentrations already detected in surface waters in the species' range is toxic to P. cuvieri.


Assuntos
Herbicidas , Poluentes Químicos da Água , Animais , Herbicidas/toxicidade , Ecossistema , Larva , Produtos Agrícolas , Plantas Geneticamente Modificadas , Anuros , Ácido 2,4-Diclorofenoxiacético , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Pollut Res Int ; 30(54): 116325-116335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37910360

RESUMO

Despite the various existing studies with wastes from wastewater treatment plants for the production of bricks, there is still a lack of further studies on the technological characterization and application only of hazardous industrial wastes from the treatment of wastewater from the metal-processing automotive industry in the stabilization/solidification with ceramic materials. Therefore, the objective of this work was to evaluate the use of waste from the treatment of wastewater from the metal processing automotive industry for the production of red ceramics by evaluating the mechanical behavior and the potential for encapsulation of contaminants. The waste was originally classified as Class I-Hazardous due to the presence of Se. A clay with a clayey-silty character was used to produce ceramic test specimens by pressing and calcining at 950 °C. In the production of these test specimens, the clay was replaced with 0%, 5%, and 10% waste, and the mechanical properties of linear shrinkage, apparent porosity, water absorption, and three-point flexural strength of the test specimens, as well as the mineralogical, chemical, and microstructural composition such as the leaching of contaminants and potential encapsulation of all test specimens were evaluated. The results showed that after incorporation into the red ceramic, the wastes led to a reduction in flexural strength associated with greater water absorption and porosity, the higher the incorporated percentage. Changes in mineralogy and chemical composition were observed but did not affect microstructure and mechanical properties. The samples did not show metal leaching above national and international standards for toxicity and limits for groundwater and human consumption. It can be concluded that the use of up to 5% of the waste as a replacement for clay meets the requirements for good mechanical performance and encapsulation of the metals originally present in the waste.


Assuntos
Esgotos , Águas Residuárias , Humanos , Argila , Cerâmica/química , Água , Resíduos Industriais/análise
8.
Biometals ; 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37874491

RESUMO

Soil pollution by metals and metalloids as a consequence of anthropogenic industrialisation exerts a seriously damaging impact on ecosystems. However, certain plant species, termed hyperaccumulators, are able to accumulate extraordinarily high concentrations of these metal(loid)s in their aboveground tissues. Such hyperaccumulation of metal(loid)s is known to act as a defence against various antagonists, such as herbivores and pathogens. We investigated the influences of metal(loid)s on potential defence traits, such as foliar elemental, organic and mechanical defences, in the hyperaccumulator plant species Arabidopsis halleri (Brassicaceae) by artificially amending the soil with common metallic pollutants, namely cadmium (Cd) and zinc (Zn). Additionally, unamended and metal-amended soils were supplemented with the metalloid silicon (Si) to study whether Si could alleviate metal excess. Individuals originating from one non-/low- and two moderately to highly metal-contaminated sites with different metal concentrations (hereafter called accessions) were grown for eight weeks in a full-factorial design under standardised conditions. There were significant interactive effects of metal amendment and Si supplementation on foliar concentrations of certain elements (Zn, Si, aluminium (Al), iron (Fe), potassium (K) and sulfur (S), but these were accession-specific. Profiles of glucosinolates, characteristic organic defences of Brassicaceae, were distinct among accessions, and the composition was affected by soil metal amendment. Moreover, plants grown on metal-amended soil contained lower concentrations of total glucosinolates in one of the accessions, which suggests a potential trade-off between inorganic defence acquisition and biosynthesis of organic defence. The density of foliar trichomes, as a proxy for the first layer of mechanical defence, was also influenced by metal amendment and/or Si supplementation in an accession-dependent manner. Our study highlights the importance of examining the effects of co-occurring metal(loid)s in soil on various foliar defence traits in different accessions of a hyperaccumulating species.

9.
Sci Rep ; 13(1): 17826, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857789

RESUMO

This study evaluated the lethal, sublethal, and toxic of a commercial formulation of cypermethrin in the anuran species Physalaemus gracilis. In the acute test, concentrations of 100-800 µg L-1 were tested over 96 h. In the chronic test, cypermethrin concentrations recorded in nature (1, 3, 6, and 20 µg L-1) were tested for mortality and then used for the micronucleus test and erythrocyte nuclear abnormalities over a 7-days period. The LC50 determined for P. gracilis for the commercial cypermethrin formulation was 273.41 µg L-1. In the chronic test, a mortality of more than 50% was observed at the highest concentration (20 µg L-1), as it caused half of the tadpoles studied to die. The micronucleus test showed significant results at concentrations of 6 and 20 µg L-1 and recorded the presence of several nuclear abnormalities, indicating the genotoxic potential of the commercial cypermethrin formulation for P. gracilis. Cypermethrin presented a high risk to the species, indicating that it has the potential to cause several problems in the short and long term and to affect the dynamics of this ecosystem. Therefore, it can be concluded that the commercial formulation of cypermethrin had toxicological effects on P. gracilis.


Assuntos
Inseticidas , Piretrinas , Poluentes Químicos da Água , Animais , Larva , Ecossistema , Poluentes Químicos da Água/toxicidade , Piretrinas/toxicidade , Anuros , Inseticidas/toxicidade
10.
PLoS One ; 18(10): e0291180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796933

RESUMO

Several herbivorous insects consume certain metabolites from plants for other purposes than nutrition, such as defence. Adults of the turnip sawfly, Athalia rosae take up specific terpenoids, called clerodanoids, from Ajuga reptans. These metabolites are slightly modified by the sawflies and influence their mating behaviour and defence against predators. We characterised these metabolites and investigated their localisation in the insect and the specificity of the uptake and metabolite modification. Therefore, we performed feeding assays with adults and larvae of A. rosae as well as larvae of Spodoptera exigua, followed by chemical analyses. Two main clerodanoid-derived metabolites were detected in the abdomen and thorax but also on the surface of the adults. Small amounts were also found in larvae of the sawfly, while they were not detectable in S. exigua. Our findings provide new insights into the peculiarities of pharmacophagy and specialised metabolism in A. rosae.


Assuntos
Brassica napus , Himenópteros , Animais , Larva/metabolismo , Himenópteros/metabolismo , Plantas , Transporte Biológico
11.
Tree Physiol ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584458

RESUMO

Lianas (woody vines) are important components of tropical forests and are known to compete with host trees for resources, decrease tree growth and increase tree mortality. Given the observed increases in liana abundance in some forests and their impacts on forest function, an integrated understanding of carbon dynamics of lianas and liana-infested host trees is critical for improved prediction of tropical forest responses to climate change. Non-structural carbohydrates (NSC) are the main substrate for plant metabolism (e.g., growth, respiration), and have been implicated in enabling tree survival under environmental stress, but little is known of how they vary among life-forms or of how liana infestation impacts host tree NSC. We quantified stem total NSC (NSC) concentrations and its fractions (starch and soluble sugars) in trees without liana infestation, trees with more than 50% of the canopy covered by lianas, and the lianas infesting those trees. We hypothesized that i) liana infestation depletes NSC storage in host trees by reducing carbon assimilation due to competition for resources; ii) trees and lianas, which greatly differ in functional traits related to water transport and carbon uptake, would also have large differences in NSC storage, and that As water availability has a significant role in NSC dynamics of Amazonian tree species, we tested these hypotheses within a moist site in western Amazonia and a drier forest site in southern Amazonia. We did not find any difference in NSC, starch or soluble sugar concentrations between infested and non-infested trees, in either site. This result suggests that negative liana impact on trees may be mediated through mechanisms other than depletion of host tree NSC concentrations. We found lianas have higher stem NSC and starch than trees in both sites. The consistent differences in starch concentrations, a long term NSC reserve, between life forms across sites reflect differences in carbon gain and use of lianas and trees. Soluble sugar concentrations were higher in lianas than in trees in the moist site but indistinguishable between life forms in the dry site. The lack of difference in soluble sugars between trees and lianas in the dry site emphasize the importance of this NSC fraction for plant metabolism of plants occurring in water limited environments. Abstract in Portuguese and Spanish are available in the supplementary material.

12.
Sci Rep ; 13(1): 11645, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468576

RESUMO

Intraspecific plant chemodiversity shapes plant-environment interactions. Within species, chemotypes can be defined according to variation in dominant specialised metabolites belonging to certain classes. Different ecological functions could be assigned to these distinct chemotypes. However, the roles of other metabolic variation and the parental origin (or genotype) of the chemotypes remain poorly explored. Here, we first compared the capacity of terpenoid profiles and metabolic fingerprints to distinguish five chemotypes of common tansy (Tanacetum vulgare) and depict metabolic differences. Metabolic fingerprints captured higher variation in metabolites while preserving the ability to define chemotypes. These differences might influence plant performance and interactions with the environment. Next, to characterise the influence of the maternal origin on chemodiversity, we performed variation partitioning and generalised linear modelling. Our findings revealed that maternal origin was a higher source of chemical variation than chemotype. Predictive metabolomics unveiled 184 markers predicting maternal origin with 89% accuracy. These markers included, among others, phenolics, whose functions in plant-environment interactions are well established. Hence, these findings place parental genotype at the forefront of intraspecific chemodiversity. We recommend considering this factor when comparing the ecology of various chemotypes. Additionally, the combined inclusion of inherited variation in main terpenoids and other metabolites in computational models may help connect chemodiversity and evolutionary principles.


Assuntos
Tanacetum , Terpenos/metabolismo , Metabolômica , Genótipo
13.
Metabolomics ; 19(7): 62, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37351733

RESUMO

INTRODUCTION: Assessing intraspecific variation in plant volatile organic compounds (VOCs) involves pitfalls that may bias biological interpretation, particularly when several laboratories collaborate on joint projects. Comparative, inter-laboratory ring trials can inform on the reproducibility of such analyses. OBJECTIVES: In a ring trial involving five laboratories, we investigated the reproducibility of VOC collections with polydimethylsiloxane (PDMS) and analyses by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). As model plant we used Tanacetum vulgare, which shows a remarkable diversity in terpenoids, forming so-called chemotypes. We performed our ring-trial with two chemotypes to examine the sources of technical variation in plant VOC measurements during pre-analytical, analytical, and post-analytical steps. METHODS: Monoclonal root cuttings were generated in one laboratory and distributed to five laboratories, in which plants were grown under laboratory-specific conditions. VOCs were collected on PDMS tubes from all plants before and after a jasmonic acid (JA) treatment. Thereafter, each laboratory (donors) sent a subset of tubes to four of the other laboratories (recipients), which performed TD-GC-MS with their own established procedures. RESULTS: Chemotype-specific differences in VOC profiles were detected but with an overall high variation both across donor and recipient laboratories. JA-induced changes in VOC profiles were not reproducible. Laboratory-specific growth conditions led to phenotypic variation that affected the resulting VOC profiles. CONCLUSION: Our ring trial shows that despite large efforts to standardise each VOC measurement step, the outcomes differed both qualitatively and quantitatively. Our results reveal sources of variation in plant VOC research and may help to avoid systematic errors in similar experiments.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Reprodutibilidade dos Testes , Metabolômica , Terpenos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plantas
14.
New Phytol ; 239(5): 1545-1555, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37309036

RESUMO

Some plant species tolerate and accumulate high levels of metals or metalloids in their tissues. The elemental defence hypothesis posits that metal(loid) hyperaccumulation by these plants can serve as protection against antagonists. Numerous studies support this hypothesis. In addition, as other plant species, hyperaccumulators synthesise specialised metabolites that can act as organic defences. In principle, the composition and concentration of plant-specialised metabolites vary pronouncedly not only among species, but also within species and within individuals. This variation is called chemodiversity. Surprisingly, the role of chemodiversity has received little attention in elemental defence. Thus, we advocate that the concept of the elemental defence hypothesis should be extended and linked to the multifunctionality of plant chemodiversity to better understand the eco-evolutionary dynamics and maintenance of metal(loid) hyperaccumulation. Comprehensive literature studies revealed that both metal(loid)s and specialised metabolites acting as defences are highly diverse in some hyperaccumulators and the biosynthetic pathways of these two types of defences are partly intertwined. Several edaphic-, population-, temporal- and spatial-related factors were found to influence metal(loid) diversity, which should be considered in the elemental defence hypothesis. We thus present a novel synthesis and outlook to extend the elemental defence hypothesis in the light of chemodiversity.


Assuntos
Metais , Plantas , Plantas/metabolismo , Metais/metabolismo , Evolução Biológica
17.
Ann Bot ; 132(1): 1-14, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37220889

RESUMO

BACKGROUND: Plants often use floral displays to attract mutualists and prevent antagonist attacks. Chemical displays detectable from a distance include attractive or repellent floral volatile organic compounds (FVOCs). Locally, visitors perceive contact chemicals including nutrients but also deterrent or toxic constituents of pollen and nectar. The FVOC and pollen chemical composition can vary intra- and interspecifically. For certain pollinator and florivore species, responses to these compounds are studied in specific plant systems, yet we lack a synthesis of general patterns comparing these two groups and insights into potential correlations between FVOC and pollen chemodiversity. SCOPE: We reviewed how FVOCs and non-volatile floral chemical displays, i.e. pollen nutrients and toxins, vary in composition and affect the detection by and behaviour of insect visitors. Moreover, we used meta-analyses to evaluate the detection of and responses to FVOCs by pollinators vs. florivores within the same plant genera. We also tested whether the chemodiversity of FVOCs, pollen nutrients and toxins is correlated, hence mutually informative. KEY RESULTS: According to available data, florivores could detect more FVOCs than pollinators. Frequently tested FVOCs were often reported as pollinator-attractive and florivore-repellent. Among FVOCs tested on both visitor groups, there was a higher number of attractive than repellent compounds. FVOC and pollen toxin richness were negatively correlated, indicating trade-offs, whereas a marginal positive correlation between the amount of pollen protein and toxin richness was observed. CONCLUSIONS: Plants face critical trade-offs, because floral chemicals mediate similar information to both mutualists and antagonists, particularly through attractive FVOCs, with fewer repellent FVOCs. Furthermore, florivores might detect more FVOCs, whose richness is correlated with the chemical richness of rewards. Chemodiversity of FVOCs is potentially informative of reward traits. To gain a better understanding of the ecological processes shaping floral chemical displays, more research is needed on floral antagonists of diverse plant species and on the role of floral chemodiversity in visitor responses.


Assuntos
Polinização , Compostos Orgânicos Voláteis , Animais , Polinização/fisiologia , Flores/fisiologia , Néctar de Plantas/análise , Insetos , Pólen/fisiologia , Compostos Orgânicos Voláteis/metabolismo
18.
Environ Microbiol ; 25(9): 1624-1643, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37011905

RESUMO

Microbes associated with flowers and leaves affect plant health and fitness and modify the chemical phenotypes of plants with consequences for interactions of plants with their environment. However, the drivers of bacterial communities colonizing above-ground parts of grassland plants in the field remain largely unknown. We therefore examined the relationships between phytochemistry and the epiphytic bacterial community composition of flowers and leaves of Ranunculus acris and Trifolium pratense. On 252 plant individuals, we characterized primary and specialized metabolites, that is, surface sugars, volatile organic compounds (VOCs), and metabolic fingerprints, as well as epiphytic flower and leaf bacterial communities. The genomic potential of bacterial colonizers concerning metabolic capacities was assessed using bacterial reference genomes. Phytochemical composition displayed pronounced variation within and between plant species and organs, which explained part of the variation in bacterial community composition. Correlation network analysis suggests strain-specific correlations with metabolites. Analysis of bacterial reference genomes revealed taxon-specific metabolic capabilities that corresponded with genes involved in glycolysis and adaptation to osmotic stress. Our results show relationships between phytochemistry and the flower and leaf bacterial microbiomes suggesting that plants provide chemical niches for distinct bacterial communities. In turn, bacteria may induce alterations in the plants' chemical phenotype. Thus, our study may stimulate further research on the mechanisms of trait-based community assembly in epiphytic bacteria.


Assuntos
Flores , Microbiota , Flores/microbiologia , Folhas de Planta/microbiologia , Bactérias/genética , Microbiota/genética , Plantas
19.
Front Plant Sci ; 14: 1145918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082343

RESUMO

Some plant species express an extraordinarily high intraspecific diversity in phytochemicals (= chemodiversity). As discussed for biodiversity, higher chemodiversity may provide better protection against environmental stress, including herbivory. However, little is known about whether the resistance of a plant individual towards herbivores is mostly governed by its own chemodiversity or by associational resistance provided by conspecific neighbours. To investigate the role of chemodiversity in plant-aphid interactions, we used the Asteraceae Tanacetum vulgare, whose individuals differ pronouncedly in the composition of leaf terpenoids, forming distinct chemotypes. Plants were set up in a field consisting of plots containing five individuals of either the same or different chemotypes. Presence of winged aphids, indicating attraction, and abundance of winged and unwinged aphids, indicating fitness, were counted weekly on each plant. During the peak abundance of aphids, leaf samples were taken from all plants for re-analyses of the terpenoid composition and quantification of terpenoid chemodiversity, calculated on an individual plant (Shannon index, Hsind, also considered as α-chemodiversity) and plot level (Hsplot, = ß-chemodiversity). Aphid attraction was neither influenced by chemotype nor plot-type. The real-time odour environment may be very complex in this setting, impeding clear preferences. In contrast, the abundance was affected by both chemotype and plot-type. On average, more Uroleucon tanaceti aphids were found on plants of two of the chemotypes growing in homogenous compared to heterogenous plots, supporting the associational resistance hypothesis. For Macrosiphoniella tanacetaria aphids, the probability of presence differed between plot-types on one chemotype. Terpenoid chemodiversity expressed as a gradient revealed negative Hsplot effects on U. tanaceti, but a positive correlation of Hsind with M. tanacetaria abundance. Aphids of M. fuscoviride were not affected by any level of chemodiversity. In conclusion, this study shows that not only the chemotype and chemodiversity of individual plants but also that of conspecific neighbours can influence certain plant-herbivore interactions. These effects are highly specific with regard to the plant chemotype and differ between aphid species and their morphs (winged vs. unwinged). Furthermore, our results highlight the importance of analysing chemodiversity at different levels.

20.
Nature ; 617(7959): 111-117, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100901

RESUMO

Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.


Assuntos
Carbono , Florestas , Árvores , Clima Tropical , Biomassa , Carbono/metabolismo , Secas , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Xilema/metabolismo , Chuva , Mudança Climática , Sequestro de Carbono , Estresse Fisiológico , Desidratação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...